Backpropagation Neural Network for Interval Prediction of Three-Phase Ampacity Level in Power Systems

نویسندگان

  • Rafik Fainti
  • Miltiadis Alamaniotis
  • Lefteri H. Tsoukalas
چکیده

No part of this journal may be reproduced or used in any form or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views expressed in this journal are those of the authors but not necessarily of IGI Global.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Network to Control STATCOM for ImprovingTransient Stability

FACTS technology has considerable applications in power systems, such as; improving the steady stateperformance, damping the power system oscillations, controlling the power flow, and etc. STATCOM is oneof the most important FACTS devices used in the parallel compensation, enhancing transient stability andetc. Since three phase fault is widespread in power systems, in this paper STATCOM is used...

متن کامل

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

متن کامل

Comparison of Intelligent Methods for Thermal Assessment of Power Cables under Geometrical Parameter Variations

In this paper, the thermal field of underground power cable is solved using two intelligent techniques which are newly introduced for thermal assessment of power cables. A backpropagation neural network (BPNN) and an adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the cable temperature under geometrical parameter variations. The effect of cable spacing and cable b...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJMSTR

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016